LU Factorization with Panel Rank Revealing Pivoting and Its Communication Avoiding Version
نویسندگان
چکیده
منابع مشابه
LU factorization with panel rank revealing pivoting and its communication avoiding version
We present the LU decomposition with panel rank revealing pivoting (LU PRRP), an LU factorization algorithm based on strong rank revealing QR panel factorization. LU PRRP is more stable than Gaussian elimination with partial pivoting (GEPP), with a theoretical upper bound of the growth factor of (1+ τb) n b , where b is the size of the panel used during the block factorization, τ is a parameter...
متن کاملCommunication Avoiding Rank Revealing QR Factorization with Column Pivoting
In this paper we introduce CARRQR, a communication avoiding rank revealing QRfactorization with tournament pivoting. We show that CARRQR reveals the numerical rank of amatrix in an analogous way to QR factorization with column pivoting (QRCP). Although the upperbound of a quantity involved in the characterization of a rank revealing factorization is worse forCARRQR than for QRCP...
متن کاملAvoiding Communication through a Multilevel LU Factorization
Due to the evolution of massively parallel computers towards deeper levels of parallelism and memory hierarchy, and due to the exponentially increasing ratio of the time required to transfer data, either through the memory hierarchy or between different compute units, to the time required to compute floating point operations, the algorithms are confronted with two challenges. They need not only...
متن کاملParallel Symbolic Factorization for Sparse LU Factorization with Static Pivoting
In this paper we consider a direct method to solve a sparse unsymmetric system of linear equations Ax = b, which is the Gaussian elimination. This elimination consists in explicitly factoring the matrix A into the product of L and U , where L is a unit lower triangular matrix, and U is an upper triangular matrix, followed by solving LUx = b one factor at a time. One of the main characteristics ...
متن کاملCalculs pour les matrices denses : coût de communication et stabilité numérique. (Dense matrix computations : communication cost and numerical stability)
This dissertation focuses on a widely used linear algebra kernel to solve linear systems, that is the LU decomposition. Usually, to perform such a computation one uses the Gaussian elimination with partial pivoting (GEPP). The backward stability of GEPP depends on a quantity which is referred to as the growth factor, it is known that in general GEPP leads to modest element growth in practice. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2013
ISSN: 0895-4798,1095-7162
DOI: 10.1137/120863691